940 research outputs found

    Why are some people with neurological illness more resilient than others?

    Full text link
    The current qualitative study was designed to evaluate the coping strategies of people living with a chronic progressive neurological illness and their carers. The neurological illnesses were Huntington&rsquo;s disease, motor neurone disease, multiple sclerosis and Parkinson&rsquo;s disease. Participants included 15 people who showed high levels of adjustment and 15 who showed low levels of adjustment. Participants were selected from an earlier study, to ensure that they satisfied the inclusion criteria for the current study. Interviews were completed to determine the strategies used to cope with the demands of the illness. Participants who demonstrated good adjustment were more likely to draw on social support to provide them with the resources to deal with the illness. In contrast, those who evidenced poor adjustment were more likely to draw on external supports to complete tasks for them. The implications of these findings for people with chronic neurological illnesses and their families are discussed.<br /

    Low Latency Geo-distributed Data Analytics

    Full text link
    Low latency analytics on geographically distributed dat-asets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single data-center significantly inflates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to high query response times because these frameworks cannot cope with the relatively low and variable capacity of WAN links. We present Iridium, a system for low latency geo-distri-buted analytics. Iridium achieves low query response times by optimizing placement of both data and tasks of the queries. The joint data and task placement op-timization, however, is intractable. Therefore, Iridium uses an online heuristic to redistribute datasets among the sites prior to queries ’ arrivals, and places the tasks to reduce network bottlenecks during the query’s ex-ecution. Finally, it also contains a knob to budget WAN usage. Evaluation across eight worldwide EC2 re-gions using production queries show that Iridium speeds up queries by 3 × − 19 × and lowers WAN usage by 15% − 64 % compared to existing baselines

    Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Get PDF
    Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH). There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI) or pulse wave velocity (PWV) is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20) with hypertension whose blood pressure (BP) was under control (<140/90 mmHg) with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05) linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s). In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population

    A systematic review of primary care models for non-communicable disease interventions in Sub-Saharan Africa

    Get PDF
    Background Chronic diseases, primarily cardiovascular disease, respiratory disease, diabetes and cancer, are the leading cause of death and disability worldwide. In sub-Saharan Africa (SSA), where communicable disease prevalence still outweighs that of non-communicable disease (NCDs), rates of NCDs are rapidly rising and evidence for primary healthcare approaches for these emerging NCDs is needed. Methods A systematic review and evidence synthesis of primary care approaches for chronic disease in SSA. Quantitative and qualitative primary research studies were included that focused on priority NCDs interventions. The method used was best-fit framework synthesis. Results Three conceptual models of care for NCDs in low- and middle-income countries were identified and used to develop an a priori framework for the synthesis. The literature search for relevant primary research studies generated 3759 unique citations of which 12 satisfied the inclusion criteria. Eleven studies were quantitative and one used mixed methods. Three higher-level themes of screening, prevention and management of disease were derived. This synthesis permitted the development of a new evidence-based conceptual model of care for priority NCDs in SSA. Conclusions For this review there was a near-consensus that passive rather than active case-finding approaches are suitable in resource-poor settings. Modifying risk factors among existing patients through advice on diet and lifestyle was a common element of healthcare approaches. The priorities for disease management in primary care were identified as: availability of essential diagnostic tools and medications at local primary healthcare clinics and the use of standardized protocols for diagnosis, treatment, monitoring and referral to specialist care

    Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges

    Get PDF
    Potential applications of tissue engineering in regenerative medicine range from structural tissues to organs with complex function. This review focuses on the engineering of heart valve tissue, a goal which involves a unique combination of biological, engineering, and technological hurdles. We emphasize basic concepts, approaches and methods, progress made, and remaining challenges. To provide a framework for understanding the enabling scientific principles, we first examine the elements and features of normal heart valve functional structure, biomechanics, development, maturation, remodeling, and response to injury. Following a discussion of the fundamental principles of tissue engineering applicable to heart valves, we examine three approaches to achieving the goal of an engineered tissue heart valve: (1) cell seeding of biodegradable synthetic scaffolds, (2) cell seeding of processed tissue scaffolds, and (3) in-vivo repopulation by circulating endogenous cells of implanted substrates without prior in-vitro cell seeding. Lastly, we analyze challenges to the field and suggest future directions for both preclinical and translational (clinical) studies that will be needed to address key regulatory issues for safety and efficacy of the application of tissue engineering and regenerative approaches to heart valves. Although modest progress has been made toward the goal of a clinically useful tissue engineered heart valve, further success and ultimate human benefit will be dependent upon advances in biodegradable polymers and other scaffolds, cellular manipulation, strategies for rebuilding the extracellular matrix, and techniques to characterize and potentially non-invasively assess the speed and quality of tissue healing and remodeling

    Delayed-type hypersensitivity in classic Kaposi sarcoma patients and controls

    Get PDF
    BACKGROUND: Immune perturbation likely affects the development of Kaposi sarcoma (KS) among people infected with the KS-associated herpesvirus (KSHV). We tested whether KSHV-seropositive individuals or cases of classic KS (cKS), which typically originates in the leg, had differing delayed-type hypersensitivity (DTH) in the forearm or leg. METHODS: Mantoux DTH with three antigens (Candida, tetanus, PPD) was performed on the forearm and leg of 15 cKS cases, 14 KSHV-positives without KS, and 15 KSHV-negative controls. The diameters of induration responses were compared by group and body site. RESULTS: Leg DTH was greater than forearm DTH among controls (mean difference 5.6 mm, P\ubc0.0004), whereas this was not observed in cKS cases ( 2.2 mm, P\ubc0.32) or KSHV-positives (0.5 mm, P\ubc0.56). Leg-minus-forearm DTH difference was greater in controls compared with cKS cases (P\ubc0.004) and KSHV-positives (P\ubc0.002). Leg-plus-forearm DTH was similar in controls (mean 28.2 mm) and cKS cases (24.5 mm, P\ubc0.60), but it was reduced in KSHV-positives (11.8 mm, P\ubc0.02), particularly in the leg (P\ubc0.004) and marginally in the forearm (P\ubc0.07). CONCLUSION: KS cases had weaker DTH only in the leg, whereas both body sites appeared weaker in KSHV-positives without KS. Both systemic and regional immune alterations may influence the development of this malignancy

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore